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1 2 3 
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ABSTRACT 

A new approximation technique to a certain class of nonlinear filtering 

(signal processing) problems is considered here.  The method is based on an 

approximation of a nonlinear, partially observable system by a bilinear 

model with fully observable states.- The filter development proceeds from 

the assumption that the unobservable states are conditionally Gaussian with 

respect to the observation initially.  The method is shown to be promising 

for real-time communication and sonar applications as demonstrated by com- 

puter simulations.  Moreover, some of the traditional techniques evolve as 

special cases of this methodology. 
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I.  INTRODUCTION 

In general, the optimal nonlinear mean square filtering (signal process- 

ing) problem does not have a finite-dimensional recursive synthesis.  This 

is due to the fact that the conditional probability density of the unob- 

servable states with respect to the observations cannot, in general, be 

characterized by a finite parameter set, such as for a Gaussian distribution 

utilizing linear methods.  Thus, approximation and ad-hoc techniques must be 

employed to construct practical filters for nonlinear systems. 

In this paper a new nonlinear finite-dimensional filtering methodology 

is presented.  The method which could be called a two-step nonlinear filter 

(TNF) is of a more general nature than the linear model approach (or extended 

linear filtering), and does not require the model "smoothness" which is 

crucial to most of the existing techniques.  Hence, the proposed technique 

may expand the range of practical problems that can be handled by nonlinear 

filtering. 

Herein, the general nonlinear model is approximated by a control model 

of "bilinear form." The "best" model approximation of this form is then 

computed by the appropriate stochastic control [1].  The final step, with 

the feedback control as a function of the estimated state x , requires com- 

putation of the optimal (m.s.e.) state estimator by the conditionally 

Gaussian filter which is formally developed by Liptser and Shiryayev [2] 

and extended by Kolodziej [3]. 

Extension of the results to large-scale nonlinear systems is accom- 

plished by incorporating a novel decomposition scheme in the filter design 

to alleviate the complexity of the control problem and the "curse of 



dimensionality" of the filtering algorithm.  Formal representation of the 

filter is given in Figure 1. , 

Application of the developed filter to a scalar nonlinear system which 

lacks model smoothness is discussed and application of the derived multi- 

dimensional filtering algorithm to a low-order nonlinear tracking problem 

according to a global criterion is presented.  In addition, a comparison 

with traditional methods, such as the popular Extended Kalman Filter (EKF) 

is given by digital computer simulation to demonstrate the effectiveness 

of the obtained results. 
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II.  MODEL APPROXIMATION AND FILTER STRUCTURE 

Consider, as given, some complete probability space (n,F,P).  Let (w ), 

i = 1,2 defined on (i^,F,P) be mutually independent Wiener processes.  Also, 

given the following nonlinear models, which may represent a broad class of 

nonlinear systems, with dynamics described by a family of stochastic differ- 

ential equations (in the Ito sense) of the form 

dx^ = F(x,y,t)dt + G(x,y,t)dw^ , 

2 
dy^ = H(x,y,t)dt + R(x,y,t)dw^ 

(1) 

where (F(*)» H(')) are nonlinear, real vector functions, and (G(')> R(')) 

are matrices of compatible orders. 

The optimal m.s.e. filter for the system in (1) is known to be the con- 

ditional expectation of the system given the observation (y ; 0 <_ s <^ t), 

t £ [0,T] provided that a finite second moment solution exists with 

x^ = E(Xj./yg; s e [0,t]) . (2) 

In principle, a sequential version of (2) can be found, but in general, 

the recursive formulae consist of an infinite-dimensional system of moment 

equations which are needed to characterize completely the conditional proba- 

bility density, p(x ,t/y ; s e [0,t]).  Thus, one is forced to seek an 
t   s 

approximation technique for practical implementation. 



Herein, a new technique, which generates a finite-dimensional, nonlinear 

filter and a "close" (m.s.e.) model approximation to the original model in 

(1) is presented.  This technique may be called "an approximation in the 

model parameter space," and its parameters are functions of the feedback 

control law, u^, which is itself a function of the observation process y^ 

In general, the model in (1) can be approximated as follows: 

t 

dx^ = F(x^,u^,t)dt + G(u^,t)dw-'- , 

(3) 

dy = H(x ,u ,t)dt + R(u^,t)dw^ , 

where (F,G,H,R) are of appropriate dimensions and are functionals of u . 

The control u^ is a measurable stochastic process with respect to Y = 

o-algebra(y^; s e [0,t], and it is chosen to minimize the following mean- 

square (global) criterion: 

Q(u) = E( / II k^ - kjr dt) , (4) 

where k^ denotes any of the functions F, H, R, or G in (1), and k is its 

corresponding approximation in (3). Here f • || is the Euclidean norm, and 

the arguments (x^,y^,t), (x^,u^,t) are omitted for brevity.  It is note- 

worthy that the choice of (4) ensures a form of global filtering criterion 

even though the search for the approximation k falls into a class of sto- 

chastic control problems and depends strongly on the type of nonlinearities 

in the system. 



An important special class of (3) is the following bilinear for. ; 

dx^ = fA(u^,t)x^ + B(u^,t)]dt + G(u^,t)dw^ , 

(5) 

dy^ = [C(u^,t)x^ + D(u^,t)]dt + R(u^,t)dw2 , 

Where (A,B,C,D.a,R) are linear functionals of u^ and are of appropriate di- 

-nsions.  The ter. bilinear refers to the fact that the syste. is linear 

in control and state, but not Jointly linear [4].  it has been shown that 

such bilinear systems are quite co:n.on in physical applications and repre- 

sent a significant class in their own right. 

Now assume u^. which .ini.izes (4), is available; then (5) is a "close," 

in the sense of (u), approximation .odel to syste. (1) since the .ini.iza- ' 

tion criterion is a measure of the quality of the approximation.  If it is 

assumed that the initial unobservable state x  -,•« . ^•.-   ,, ivaDj.e state, x^, is conditionally Gaussian 

With respect .„ the inUial oh.^vable state. y„. then unde. certain htoad 

assumption, (see [2] ot (3)) the opti^l ..s.e. £Uter for the .yste. in 

(5) takes the form of 

dx = (A:^ + B)dt + Adv  , 
t     c t ' 

dr^ = (Ar^ + r^A* + G G* - AA*)dt , 

A  = (r^c*)R~-'- , 
^ (6) 

dv^ = R~ [dy^ - (Cx^ + D)dt] , 

-2 ~   ~ 
R  = R R* , i 

where x= E(x^/Y^), r^ = Cov (x^/Y^) . 



Here E(/) denotes the conditional expectation operator, T     conditional covari- 

ance, * transposition operator, and Y is the a-algebra generated by the 

observations on [0,t], t E [0,T].  Again the arguments (u ,t) are omitted 

for brevity. 

Now, if the optimal control u or its approximation can be obtained, 

then system (6) provides a finite-dimensional approximation for the nonlinear 

filtering of (1).  Also, the partially observable system in (5) is trans- 

formed into a completely observable system (6).  Consequently, to solve for 

the control law analytically, the minimization criterion (4) must be trans- 

formed accordingly.  Thus, if (4) is rewritten in the form 

Q(u) = E  ; L(x ,u ,t)dt , 
0     ^    ^ 

then for u = u 

Q(u) = E( / L(x ,r ,u ,t)dt) , (7) 
0     c  t t 

where L(x ,r ,u ,t) =  / L(£;,u ,t)f(C,x,r )d5, and f (C,x,r ) denotes a dif- 

ferential Gaussian measure with mean x , variance T   . 

If u is replaced in (6) by u, then an equivalent, completely observable, 

stochastic control problem [(6), (7)] emerges where the new state of the sys- 

tem (x ,r ) are generated by (6).  Hence, the filtering problem is actually re- 

placed by a stochastic control problem which results in a stochastic non- 

linear Bellman equation [1].  Apparently, this could lead to a more difficult 

problem to solve than the original filtering problem for (1).  However, 



satisfactory approximation to the control law can be found without solving 

the Bellman equation exactly. 

It might be noted here that the solution to this problem according to 

u resembles the approximation criterion in the EKF approach, and makes the 

approximation of closed analytical form. 

The following scalar example illustrates the suggested filtering proce- 

dures. 

Example 1 

Consider a process with an absolute value detector so that 

dx^ = f|xj.|dt + a^ dwj , 

2 
dy^ = hx^ db + a^ dw^ , 

(8) 

1  2 
where w , w are independent Wiener processes, f,h,a^,a„ are constant, and 

t E [0,T].  The bilinear feedback approximation yields 

dx = u X dt + CT, dw  , 
t   t  t     It' 

2 
dy^. = x^dt + c^ dw^ , 

(9) 

where u is selected to minimize 

T 
E( /  (f|x I - uxj^dt) . (10) 

0      "^     ^ 



The optimal (m.s.e.) filter for (8) with x- conditionally Gaussian w.r.t., 

YQ has the form of 

dx^ = uxj^ dt + r^ hia^y    dv^ , 

dr^ = [2u^r^ + aj - h^ vlio^r^ut , 
(11) 

-1 
where dv^ = (a^ )(dy^ - hx^)dt is the innovation process.  Now from (7) the 

equivalent minimization criterion to (10) is 

Q(t,x,t) = E( / (u|5| - uC)^d$(C) , (12) 
0 

2 
where d$(5) =     exp(-0.5 ^"^'J}   )dg, for nonsingular r . From [5] it is 

/2Trr^   .      ^^t ^ 
found that the optimal u is given by 

2xr       "2 
" = f[7=exp(-|-)- 2(x' + r)erf(-^^) - (r |^ + 0.5^ ^] (x^ + r)"^ . 

(13) 

where v is the solution of the stochastic Bellman equation which means that 

we have to solve a nonlinear partial differential equation first in order 

to evaluate the optimal control in (13).  However, it is seen that an approxi- 

mating optimal control 

- . , [2.reKp(-x/2r)l ^ 2 erf (-i//») (14) 

v^^ (x +r) 

already gives better performance than the EKP [5] 
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III.  DECOMPOSITION SCHEME FOR MULTIDIMENSIONAL SYSTEM 

Extension of the previous results to large-scale nonlinear systems is 

accomplished by incorporating a novel decomposition scheme in the filter 

design.  This should alleviate the "curse of dimensionality" which is en- 

countered if the optimal approximation is applied directly.  Recall that this 

solution involves a function of (n + ^~—-)  variables, where n is the dimen- 

sion of the system. 

The strategy adopted in this decomposition scheme is based on the decom- 

position of the original system into two interconnected subsystem approxima- 

tions.  The first subsystem is only linear (i.e., linear process and observa- 

tion equations).  The second subsystem includes all the nonlinearities in 

the system which are then approximated by the proposed TNF.  The main ad- 

vantage of using this scheme is that the control parameters, which are needed 

in the TNF algorithm, will be easily obtained as functions of the parameters 

of the first-stage linear filter, S„.  Figure 2 shows a block diagram repre- 

sentation of the suggested scheme. 

An interesting broad class of nonlinear systems of the following form 

is considered here. 

dx^ = F(x,y,t)dt + G(x,y,t)dw^ , 

(15) 

dy^ = H(x,y,t)dt + a(t)dv^ , 

where w , v are mutually independent vector Wiener processes of appropriate 
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dimensions, a(t) is a matrix of compatible order.  The functions F('), H('), 

and G(«) can be partitioned as follows: 

F(x,y,t) = f^(t)x + f^Cx.y.t) , 

G(x,y,t) = g^(t) + g^Cx.y.t) , (16) 

H(x,y,t) = 

h^(t)x 

b2(x,y,t) 
, a(t) = 

^1  ° 

0 

Here f^, h , and g are matrices of appropriate dimensions.  f„, h„, and g„ 

are nonlinear functions of their arguments, and of compatible orders. 

The general outline of the decomposition scheme and the various filtering 

algorithmic steps are: 

(1) The nonlinear system as in (15) can be decomposed into two subsys- 

tems. 

Subsystem I 

dx^^ = fi(t)x^^ + g^(t)dw^ , 

dy^^ = h^(t)x^^ + a^(t)dv^ . 

(17) 

where f^, h , and g are as defined before, and w , v are indepen- 

dent Wiener processes of appropriate dimensions.  The subscript f 

denotes the first subsystem. 
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Subsystem II 

dx^(. = f2(x,y,t)dt + g2(x,y,t)dw^ , 

(18) 

2 
dy^^ = h2(x,y,t)dt + CT^ dv^ , 

2 
where f„, g_, and h„ are as defined before and w , v are again 

independent Wiener processes of compatible orders.  The subscript 

s denotes the second subsystem. 

(2)  Apply a classical filtering technique, i.e., the Kalman-Bucy algo- 

rithm [6] to the linear system in (17) as follows: 

dx^^ = f3_x^dt + ph*(CT^a*)"-'- dn^. , 

dPj.  = (fj_P + pf| + g-^g^ - ph*(a^a*)" h^p)dt , 

(19) 

dn^  = dy^^ - h^x^^dt . 

x^(0) = E(x^(0)), p (0) = cov(x^(0)) , 

where x^ is the estimate, and p(t) is the error covariance matrix. 

This will be considered as the first stage of the filtering algo- 

rithm. 

(3)  Find an appropriate bilinear approximation model for the system in 

(18) of the following form: 
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dx^ = f2(x,u^,t)dt + g2(u^,t)dw , 

(20) 

dyg = h2(x,u^,t)dt + a^dv^ , 

where 

f2(x,u^,t) = Z    u^jX_. + u .f^ \±\  + ^(n+1) = A(\'t)^ + B(u^,t) , 

n 
h_(x,u ,t) = Z    u^jX^ + u jfl ^j^j "" ^(n+2) = C(u^,t)x + D(u^,t) , 

S2(\.t)  = u^^^^3^ = g^(u^,t) . (21) 

Here the second equality is used for mathematical convenience.  The 

controls u = {u.}, j=l,2,...n+3 are measurable with respect to a- 

algebra {y^ ; s e [0,t]}, and are chosen to minimize the following 

global filtering criterion 

^   - 2 
Q(u) = min E [ / (k-k) dt] , (22) 

M Q 

where k denotes any of the functions f„, g„, or h„, while k denotes 

the corresponding approximation f., g^'   °^ ^^2 ^^   (21).  Using the 

property of expectation and Bayes formula, (22) becomes 

T 
Q(u) = min E( / E(k-k)^/y  ; s <_ t)dt 

u   0 ^^ 

= min E( / L(y ,u)dt) , (23) 
0     ^ 



15 

t  ~ 2 
where L(y^,u) = E (k-k) , and argiaments (x,y,t), (u ,t) are omitted 

for brevity. 

The minimization of (23) with respect to u = {u.}, j=l,2,...n+3 

can be performed "locally" since L depends on the a-algebra (y  , 

s e [0,t]), which is not affected by the u.'s. 
J 

Assume that the u.'s which minimize (23) are obtained. 

(4)  The new equivalent system has the following form: 

dx^. = (A^(u^,t)Xj. + B^(u^,t)dt + G^(Uj.,t)dw , 

(24) 

dy^ = (C^(u^,t)x^ + D^(u^,t))dt + adv , 

where 

A^(u^,t) = [f^(t) +A(u^,t)], B^(u^,t) = B(u^,t) , 

\^'^ \ 0 
C,(u ,t) =    .      , D (u t) = 

C(u^,t)     "■    '^       D(Uj.,t) 

0^      Q 

G^(\.t) = (g^(t) + g^(Uj.,t)), a = . 
0   a- 

Here again the matrices are of compatible orders. 

(5)  Again, with certain assumptions about (A , B , C , D , G , a) and 

the distribution of the initial state x given y  (see [2] and [3]), 

the corresponding conditionally Gaussian filter is of the follow- 

ing form: 



dx^ = (A^x^ + B^)dt + S dv , 

16 

S  = (r^C*)(aa*) 

,-0.5 

-0.5 

dv = (OG*)     •   (dy^ - (C^x^ + D^)dt) , 

(25) 

dr^ = (A^r^ + r^A* + G^G* - ss*)dt , 

where A^, B^. C^, D^ are as in (24), and the arguments (u ,t) are 

again omitted for brevity.  A schematic diagram representation of 

the algorithm is given in Figure 3.  A second-order example to 

demonstrate the algorithm steps follows. 

Example 2 

A second-order, linear sonar target track is considered here with a non- 

linear observation.  This could represent active tracking of a multi-mode 

range system or passive tracking with multi-receiver-transmitter and corre- 

lated time delay. 

It is assumed that state vector (range = x^, range rate = x ) evolves 

according to the following stochastic differential equations: 

dx = Fxdt + Gdw , 
t ' (26) 

where dx = 

dx. 

; dx. 

0      1 
,   F = 

|0 -ct 

'ol 
, G = 

J 
, a = 1/T. 

w^ is a Wiener process, and T is the target maneuver time constant, 
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The measurement equations are nonlinear due to target motion during 

transmission.  Neglecting the nonlinearities in the "velocity observation," it 

is assumed that 

dy = H(x,t)dt + Rdw , (27) 

where dy = 
dyi 

dy. 
, H(x,t) = 

x^ + mx^x^ 

X, 
, R = 

o^       0 

, w IS a 

Wiener vector of measurement noises, m = a/c, a is a constant, and c is the 

average speed of sound in water.  Applying the above algorithm, the two 

subsystems are given next. 

Subsystem I 

Here only the linear, y , observation is used, 

observation equations are 

The system and 

dx = X dt , 

dx„ = -ax. + adw , (28) 

dy, = x^dt + cr^dw 

Then using the Kalman-Bucy filter for (28) yields 

dx  = x„^dt + -^ dv , If   2f 

(29) 

dx2£ = -ax^^dt + — dv .. 
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where x.^ = E(x./y ), i = 1,2, the conditional expectation, dv is the 

innovation process, and p , p are the standard time-variant solutions 

to components of the Riccati equation. 

Subsystem II 

The best bilinear observation approximation is obtained such that 

u., j = 1,2,3 are measurable with respect to the a-algebra (y„ , 
j /s 

s £ [0,t]), and minimize the following global criterion: 

T 
2 

J(u) = min E( / (x^X2 - (u^x^ + u^x^ + u^) )dt , (30) 
u.   0 

which can be written equivalently using the properties of expectation as 

T 
J(u) = min E( / L(y,u)dt) , (31) 

u   0 

where L(y,u) = E (x^^x^) - E (R^) + E (N ) , N = u^x^ + u^x^ + u^, 

R = 2x^x„N. E refers to conditional expectation with respect to 

the observation Y .  Thus, performing the minimization with respect 

to u., j = 1,2,3, the following are obtained (see [5]): 

"l = ^2f ' 

U2 = x^^ , (32) 

U3 = p 3 - x^^x^f 
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Then, the new equivalent system is 

dx = Fx dt + G dw , 

dy = C X dt + D (x)dt + a dw  , 

where m(l+u ) 
^2 

^1 = 0 1 

'^1 0 ■ 

a    = 
.0 ^2- 

> 

mu. 

(33) 

, D^(x) = 

, F,G are the same as in (26) 

Now, assume the following: 

(i) if f denotes any of the functions A, G, C^, D , a, then 

* T 
P( /  |f I dt < «) = 1 ; • 

0 

(ii) x_ given y„ is conditionally Gaussian.  Then, from (6) the corre- 

i 
spending conditionally Gaussian filter is 

dx^ = X2dt + — (r^(l + mu^) + mu2r3)dv^ ■*■ ~ ^^^2 ' 

*     *      1 *     « 12 
dx^ = -ax^dt + [— (r^d + mu^) + mu2r2)]dv^ + — dv^ , 

(34) 

where, 

dv. dy. - (1 + u^mx^ + "lUo^? "*" ^^•j)'^^ > 

dv2 = dy2 - X2dt , 
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and m,a are defined as before. 

The covariance equations are 

2 

dr^ = {2r3 - [^  (r^(l + nx^^) + T^^u^)^  + ^]} dt . 

2 

dr^ = (a^ -2aT^-   [^ (T^(1  + mu^) + r^m^^)' + ^] } dt , 

'l "2 

dr3 = {r^ - ar3 - [^  (r^(l + mu^) + r3mu2)(r3(l + mu^) 

+r2mu2)] -- (r2r3)}dt . (35) 

^2 

-^ -N * 

Where u^, u^, U3 are as in (32). 

Notice that in this case (34) and (35) are the same as the filter 

equations of the modified-second-order truncated filter defined 

by Jazwinski [6] because the nonlinearity is of second order, al- 

though the approach is quite different. 
■ 

Extended Kalman Filter I 

The filter equations are [6] 

dx^ = V^ + ^ [(1 + ^2^?^ +  P3n^i]dv^ + ^ dv  , 
'^l o 

(36) 

dx^ = -ax^dt + ij Id + in^2)P3 + P2ni^^)]dv^ + "f dv, , 

where m,a are as defined before, and 1 
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dv^ = (dy^ - (1 + mx2)x^dt) , 

dv^ = (dy^ - x^dt) . 

The covariance equations are 

2_ ■^ "^ 2      ^3 
*^^1 "  ^^^3 ^ ((1 + x^m)?^ + x^mp^)     - —}   , 

^1 ^^2 
2 

dp2 =  {a^ -  2ap2 - ^  [(1 + iiiX2)p3 '^ "^iPz^^ - ^}  dt   , (37) 
o^ ^2 

dp^ =  {P2 - ap^ -   [— ((1 + mx^)?^ + x^mp^XCl + mx^) 

1 
P3 + nip2Xj^) 2 P2^3^  ^^   ' 

"1 
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IV.  SIMULATION RESULTS 

The TNF algorithm and the EKF algorithm for the previous example were 

simulated by a digital computer.  In the simulation, a fourth-order, Runge- 

Kutta integration algorithm was used for all trajectory filters and differ- 

ential equations of both the original system and the error-covariance 

matrices.  Throughout all the simulation cases, the Wiener processes w , 

which describe the excitation noises, were generated from pseudo-random 

Gaussian variables, v., N(0,1).  The latter was generated by standard 

(IMSL) library subroutine, and increments of w were approximated by 

Aw = /At v., where At is the integration step size. 

The performance of the two filters are compared on the basis of: 

(1) The "mean-square error" (m.s.e.) of the filter output to x 

such that 

j^ = E(^; (x(t) - x^/t))2dt) , 

(38) 
T 

Jgj^ = E( / (x(t) - Xj^(t))^dt) , 

and JJ gives the relative (percentage) difference between J™,™, 

"^EKF ^^'^^  ^^^^ 

JJ = ^f ™^ X 100 . (39) 

(2)  Root mean square error 



24 

r^  , j = 1,2 Q.(t) = [ Z —I ^ 3 lS_.ll/2 
J,      1=1 N 

VQ (t) = [ E -^ ^-^J_JL^^1/2 ^ . . ,^2 
•J      1=1 ^ 

(40) 

where Q , j = 1,2 are the RMS range (position) errors. VQ , j = 

1,2 are the RMS velocity (range rate) errors, and (xf^\t ), x^^^(t )) 

are ttie 3   components of the true state and its corresponding TNF, 

EKF estimates at time t^^ on the i*^^ simulation run, in a series of 

N runs.  For completeness, some comments on the filter initializa- 

tion seem in order here.  Under actual operating conditions it is 

extremely difficult, and indeed rare due to one reason or another, 

to obtain reliable initial estimates of the state vector and its 

associated covariance matrix.  Consequently, the following set of 

initial conditions are reasonably chosen.  Throughout, the initial 

range value is 5000 meters, while the initial range rate value is 

assumed constant and chosen from the following set (50 m/sec, 500 

m/sec, 1000 m/sec).  The initial condition of the estimates are 

calculated according to the following equation: 

x^(0) = X.(0) + /?^loT n^, i = 1,2 (41) 

where n^ is a random variable.  The initial covariance matrix is 

"Pl(0)   P3(0)"' 

P(0) = 
P3(0)   P2(0) 

'   10^   10^ 

10^   10^ 

where the diagonal elements of p(0) are chosen relatively large 
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so that the filter will "forget" the initial values as more data 

arrived, and to ensure the randomness of the initial estimates. 

In all cases, a system noise of 1% variance of the initial state 

values is used, and different levels of measurement noise standard 

deviation (from 2-20%) of the initial range, range rate respectively, 

are added.  For convenience, the time interval!, for each run is 

10 seconds, and the number of runs, N, for each simulation test 

case is 20.  Thus, all results have been ensemble averaged over 

N = 20 rims. 

The effect of increasing the nonlinearity, (i.e., increases 

in a), of the system on the rms error levels Q.(t), VQ.(t), j = 

1,2, are demonstrated in Figures 4 and 5 as compared to Figures 

6 and 7, respectively.  Accordingly, the TNF performance improved 

substantially, and the rms-error levels increased considerably 

as compared to the rms-error levels of EKF.  These comparisons are 

summarized by Table 1. 

Comparison of Figures 8 and 9 with Figures 6 and 7, respective- 

ly, and Table 2 indicates that the EKF gains in accuracy relative 

to the TNF as the observations become more noisy (i.e., increases 

the range measurement noise standard deviation, a    to 20%).  This 

is due to the fact that the nonlinearity, (here in the range measure- 

ment) , is masked by the large measurement noise. 

From the tables and figures mentioned above, it is seen that 

in many cases the TNF shows significant improvement in filter 

accuracy as compared to the EKF.  For certain applications, the 

complexity of the proposed algorithm (TNF) over the EKF would 
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Table 1.  Synopsis of the Percentage Accuracy of TNF Over EKF. 

a JJ2^% JJ2% 

1 10.91 35.57 

1.5 32.37 57.14 

2 78.60 90.03 

3 91.42 98,85 

(a^ = 2%, a^ = 10%, x^(0) = 5xlo\, X2(0) = 10^ m/sec) 

Table 2.  The Effect of Measurement Errors on the Percentage 
Accuracy of the TNF Over the EKF. 

a 3 3 3 

^1 2% 10% 20% 

^2 10% 10% 10% 

JJ^% 91.42 11.0 - 7.23 

JJ2% 98.03 17.47 -16.13 

(X2(0) = 10"^ m/sec, x (0) = 5xlo\) 
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be justified by the significant improvement in the filter accuracy. 

That the EKF performs slightly better in the higher observation 

noise case is due partly at least to the suboptimal approximation 

used. 
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V.  CONCLUSION 

A new global-filtering approximation for a certain class of nonlinear 

systems is presented.  An important practical feature of the proposed method 

is the method's independence of the model smoothness assumption which is 

crucial to traditional techniques.  Furthermore, a major and equally important 

byproduct is the generation of a "close" (in m.s.e.) bilinear model approxi- 

mation of the original nonlinear system.  The assumption that x- given y. is 

conditionally Gaussian may be satisfied under somewhat realistic operating 

conditions, and, of course, it is more general than the traditional Gaussian 

assumption of both x and y . 
t    -^t 

The digital computer simulation demonstrates the substantial filtering 

accuracy improvement of the TNF over the popular EKF in most cases. 

In terms of computation time the TNF takes roughly 10% longer than the 

EKF. 

m 
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